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ABSTRACT 1c T_

JA self-organizing, distributed, massively parallel network anatomy for the
recognition of input stimuli and the learning of temporal patterns is proposed. The
network adapts itself to recognize individual incoming events in the first, or static,
subsystem. These recognized events, received by the. system over time, are
simultaneously categorized as specific sequences by the temporal subsystem. Seperate
attentional mechanisms allow for the recognition of events with a low signal-to-noise
ratio while simultaneously allowing attention in the temporal subsystem to be focused
only on sequences that meet some minimum length criterion. The static subsystem is
based on the adaptive resonance paradigm of S. Grossberg. The temporal subsystem,
a gaussian classifier, processes the static information produced by the first subsystem.
These gaussian classifications represent the statistics of the temporal data and use a
scheme of moving mean and moving covariance to update the classes. Via supervised
learning these self-developed classes are then combined into an overall probability
estimate using a bayesian probability scheme. \The temporal subsystem calculates a
gaussian distance from its multi-dimensional haput, and hence has the important
ability to predict the presence of a sequence prior to receiving the entire sequence as
input. Each subsystem has autonomy in the updating of its memory traces, and the
information stored is independent of the simultaneous action of the other subsystem.
The stability of the system as a whole is guaranteed by the relative independence of the
subsystems.
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The Requirement for Temporal Knowledge Processing

The ability to understand one's environment, an essential property in the
elusive search for intelligence, is not governed by static pattern recognition alone.
The order in which events occur can be even more important than the events
themselves, and an intelligent system, whether it be a mouse or a robot, must be able
to detect and understand this ordering. Thus the dimension of time allows access to a
wealth of information about the current environment, past events, and expectations
about the future. An ability to incorporate time into information processing is
necessary for abilities such as recognition of sequences of events, understanding cause
and effect, making predictions, planning, et cetera.

The ability to recognize sequences is essential for many tasks, most notably
those involved with audition and vision. A sequence may consist of a stream of
phonemes, typed letters or frames from a movie. Once the initial preprocessing has
been done and the individual members of the sequence have been recognized. the task
is shifted. The processing is then concerned with determining which of the known
sequences are represented by the input. Since the answer may depend on the context
in which the input has been received, the system must return all the sequences that the
input might represent with a confidence rating indicating the quality of match between
the input and the known sequences.

Consider a stream of letters. The task is to recognize the words that are being
typed. Here it is important to recognize the order in which the letters appear and the
words these sequences of letters might represent. If the typist is poor, a certain
amount of error will appear in the sample and this must be dealt with. Also, a
subsequence may be a legitimate word, and the system should recognize this in order
to allow a more sophisticated system to deal with the ambiguities. For instance,
suppose the space bar is broken and the typist is prone to error. With the .following
input the system might respond as shown:

Input: itakeisssuewitjthet
Output: I it take I is issue sue wit with the that

The system might produce a confidence level for each word. After the final "t" the
last two words, "the" and "that", might have roughly the same confidence, signifying
that each is nearly correct and are valid responses. With the added information of
word boundaries that the space bar would educe, the number of spurious words
detected would be significantly reduced.

To process this stream of letters the system must be able to represent order
information and work on imperfect exemplars. In a more complicated situation, e.g.
spoken language recognition, the duration of the constituents of the sequence and the
spacing between them may become important. The system must be able to
incorporate this information, and ideally it should learn the sequences and adapt to the
environment in which it will be operating.
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The system proposed is a multi-layer architecture which uses two distinctly
different network paradigms. The network adapts itself to recognize individual
incoming events in the first, or static, subsystem. This subsystem utilizes the Adaptive
Resonance paradigm outlined by Carpenter and Grossberg (3). These recognized
events, received by the system over time, are simultaneously categorized as specific
sequences by the second, or temporal, subsystem. Seperate attentional mechanisms
allow for the detection of events with a relatively low signal-to-noise ratio while at the
same time requiring the sequences to meet some minimum length criterion. The
temporal subsystem, a gaussian classifier, processes the static information using a
combination of temporal decay and moving mean and covariance (4) to obtain a
representation for the statistics of the input patterns and update the categorizations.
These self-developed categories are then combined via supervised learning to produce
the final output, an array of the confidences that the system is seeing each of the
learned sequences.

Proposed Anatomy

F2

F3 F4 F5

F1

FIGURE 1

Temporal information processing system anatomy. Fields F1 and F2 constitute the static subsystem, an
adaptive resonance system. Field F3 contains information based on the classifications made by F2, after
decay and shunting. The F4 field, together with the connections from F3 to F4, consist of the gaussian
classification partitions. Field F5 is used to combine self-organized sequence classes via supervised
learning. This allows for the incorporation of expert rules.
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Figure 1 shows the proposed temporal system anatomy. The system is broken
into two distinct subsystems: static and temporal. The subsystems interact via specific
connections from F2 to F3. Self-organization is an important element of the system,
and it is this criterion that guides the design. The system must be able to adapt to
changes in the environment, and to recognize novel inputs and new sequences while at
the same time watching for known patterns. In other words, learning should never be
turned off, although some capability to prime the system externally should exist.
Each subsystem performs learning, the updating of connection weights and activation
function parameters, independently. The knowledge stored in these memory traces is
derived from both external inputs and information coming from the other
subsystems. The learning, however, is done in a closed subsystem without being
affected by the concurrent processing being performed in other sections of the
system.

Static Subsystem

IN PUT

STATIC PATTERN SUBSYSTEM

FIGURE 2

Static subsystem: Adaptive Resonance Theory

3T WV



The requirements of the static subsystem, or S 1, are that of a straight- forward
pattern classification system. Inputs to the system need to be processed and classified
according to some criteria. Some attentional functionality is useful, but in this
anatomy a third subsystem concerned with context and expectancy would relay
attentional information to the F1 field.

S1 is implemented as the simplest form of an adaptive resonance system, with
minor adaptations. Long-term memory (LTM) traces between fields Fl and F2
contain learned knowledge on the classification of incoming events. This
classification will, in the simplest case, take the form of a single event-node in the F2
field passing information to the temporal subsystem and field F3. In the general case,
it might be advantageous to pass multiple real-valued signals from F2 to F3.
However, the equilibration and stability properties of adaptive resonance theory
under such a multiple-node classification scheme are insufficient. In addition, the
static subsystem need only perform a single-node classification, as the temporal
subsystem will accept single events and integrate them with respect to time. It is quite
possible that under the more general case of multiple-node static classification, an
intermediate subsystem would be necessary to perform precisely the transformation
to single-node events prior to input into the temporal subsystem.

The transfer of information from F2 to F3 is performed only after the S 1 has
reached resonance. At this point the F2 field has encoded the event information from
the input. This subsystem is self-organizing, in that the event categories are created
by the system based on some error criterion, or vigilance, and a threshold in the
gain-control node G2. The vigilance level, represented by the activation threshold of
the Al node, regulates the amount of noise allowed in a pattern, as well as the relative
coarseness of the individual categories. The G2 threshold level, when used in
combination with the 2/3 matching rule (3), determines the amount of activity
necessary in field F1 to activate field F2. This allows the system to ignore a certain
amount of noise in the system when unaccompanied by signal. This feature avoids the
pitfall of having the temporal processing fail to correctly classify important sequences
due to attention being paid to non-events.
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Temporal Subsystem

F3 F4 F5
input from self-organized combinations
F2 with gaussian of gaussian
decay and classification classes based
shunting nodes on supervised

learning

TEMPORAL PATTERN SUBSYSTEM

FIGURE 3
Temporal subsystem consisting of three fields. The gaussian classes are represented in field F4.

Upon receiving categorization results from the static subsystem, the temporal
subsystem, S2, attempts to classify the spatial representation of the sequence received
thus far into an existing temporal pattern category. Failing this, the subsystem creates
a new category for the current sequence.

The F3 field receives input from the F2 field once the static system has reached
resonance and has settled upon a classification category. This category is then passed
to F3. The F3 field experiences a decay factor, providing for the ordering of its nodal
activations based on their time of input (5). Some shunting based on the attention to be
given to a particular category could also be provided (6).

The F4 field utilizes a gaussian classification scheme to achieve an
unsupervised partitioning of the input space. Each node consists of a
multidimensional gaussian activation function in which the mean and covariance
matrix adapt to the data. The subsystem then learns the statistics of the data by
representing the data as a sum of multi- dimensional normal distributions.

In one extreme, in which each input represents a distinct class and each node
learns just one data point, this subsystem produces a Voronoi classifier (1). The
Voronoi classifier for a set of points is the optimal nearest neighbor classifier for the
points. In this case, the subsystem is nothing more than a nearest neighbor classifier,
returning the gaussian distance from each of the stored points.
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In the other extreme, in which all the points are classified by a single node, the
subsystem fits a normal distribution to the data. In this case the subsystem would
compute the mean and covariance matrix for the inputs and its output would be a
normal distribution with those parameters.

A large class of distributions can be approximated by a mixture of gaussians.
Therefore the temporal subsystem approximates the distribution of its input by a
collection of gaussians at the F4 level. This allows for a distributed system in that it
uses many nodes to represent the distribution of the input, and since the domain of the
gaussians is infinite, there is a degree of redundancy in this representation. The
system degrades gracefully under nodal failures, yielding the fail-safe property that is
desirable in many applications.

F3 F4

GAUSSIAN CLASSIFICATION

FIGURE 4

Representation of gaussians:

The incoming weights contain the mean, U , while the covariance, I , is contained within the gaussian
node itself. The dimensionality of each individual gaussian is determined by the number of non-zero
incoming weights. In this case, G1 has dimension 3 while G2 has dimension 2.
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The individual gaussians are represented by the nodes in the F4 field. Each
gaussian may be of a different dimensionality. The covariance for a particular
gaussian is represented by the activation function of the node, while the mean can be
represented in the connections from F3 to F4 (see figure 4). The gaussians are
presented with the n-dimensional input from field F3 having n nodes and, in parallel,
compute their respective activation values (gaussian distances) from this input. The
activation value for these gaussian nodes in F4 can be obtained via the following
formula:

exp ( -0.5[(x jkt. OL- . 1.0)]

aj(2L) = ........................................

(2x)(d/2) * 111(1/2)

Here aj(.) is the activation value of the jth gaussian node when presented with vector

input x. I is the covariance matrix for gaussian j, while 1 is the vector-valued mean.
d is the dimensionality of this particular gaussian and is equated with the number of
non-zero input connections to node j. Since the components of the mean a are
represented as a node's input weights, these weights can be thought of as shifting the
origin for the node. A gaussian function is then applied to the inputs of the node, as
opposed to a sigmoid (see figure 5).

0,1

O||O

0,0

00

00 -I

(a) (b)

FIGURE 5
Activation functions:

(a) shows the conventional sigmoid. (b) shows the gaussian activation function used in field F4. Tre
incoming weights shift the origin for the function, and the variance is a plastic, or learned, parameter.
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Only those nodes whose activation values reach some threshold defined by that
node's activation function (usually the value of the gaussian at one standard deviation
from the mean) are considered to be a likely category for the current input and are
updated. This updating consists of moving the mean and variance of the gaussian
based on the current input and some measure of the total number of inputs to the
gaussian thus far. For the updating of the mean, we have

4(j+1) = P) + [1/(j+1)][I(j+1)- t(j)]

where (j) is the (one-dimensional) mean after input j and I(j+ 1) is the j+ 1st input to
be categorized in this gaussian. The updating of the covariance is similar. Here

Sxy(i+l) = Sxy(J) + U/(i+1)I * Axy(i+1)

with

Axy(i+l) = [(xj+1) - Itx(J)) * (y(j+l) - gyU)

Then

1
ZXYUi+l) -- SXY (j +1)

where we are calculating ZxyQi+l), the x,y component of the covariance matrix I
after the j+l s t input clustered in this gaussian. x(j) and y(j) are the x and y
component of the input vector after the jth input, and xtx , gy are components of the
mean.

Independent of this learning procedure, the values across the F4 field represent
the relative likelihoods that the current input belongs to a particular class. In the
unsupervised case, this is the solution, and the system, having been presented with a
given sequence, will be able to recognize that sequence, along with similar sequences
that have missing or additional features. In fact, the activation value of an F4 node is a
measure of how close a given input is to previously learned sequences. If we allow a
particular gaussian to process on only those inputs that are a part of its make-up, i.e.
allow gaussians to only process within their dimensionality, we have a fundamental
way to ensure that extra or spurious input, as would be found in a noisy environment,
do not affect our recognition of learned sequences.
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V Vw\A WW
FIGURE 6

Pattern Drift:
A recognition system must be able to notice the drift, and continue to recognize patterns within the
context presented. At the same time, the system's categorization should not be fatally affected by the
input drift.

This statistical learning scheme allows for a measure of control over the drift
of categories. This can be seen by considering the example in figure 6, in which an
initial block V is slowly deformed into a W. The input pattern gradually becomes
degraded. In a strict adaptive resonance system, this can force the category
corresponding to the original pattern to drift toward the most degraded pattern. This
necessitates the eventual creation of a new category for V the next time it is presented
to the system. In addition, in a temporal setting the old V category, which now
represents W, will still be a part of previously learned sequences containing V. These
sequences must also be relearned, incorporating the new V category. Until this
relearning has occurred, the system will consider a sequence containing the new V as
different from those containing the original V, even though the sequences may
actually be identical. The gaussian classification scheme will instead represent the
statistics of these patterns as they have been presented. Tierefore, a mixture of
categories will exist that represents the average of the patterns that have been
coalesced. While the original V node will be modified as the category drifts, this
modification is restrained and will only allow a small amount of drift, as defined by
the covariance. More significant drift will cause new gaussians to be created. This is
a result of the infinite support of the gaussian activation functions. Each gaussian
node returns its distance from the input, regardless of the degree of fit between the
node and the input pattern. This implies the ability to learn the tendencies of the input
data in a non-chaotic way. In addition, nodes that by themselves represent V and W
continue to exist, and need not be recreated later.

A consequence of this scheme is that it allows the system to recognize when
events are no longer being detected in the environment. Each node retains a time tag
indicating the last update time, allowing the system to recycle nodes that no longer are
being used by the system. This is important in an implementation, since the
constraints of a finite number of nodes, combined with a shifting environment, can
cause the system to saturate.
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The activation values of these F4 nodes are also used in a supervised learning
setting. If information exists as to the meaning of the sequences, this information is
utilized by field F5 in combining the self-organized classifications into actual event
categories. We set the connections between F4 and F5 such that, for an event category
(F5 node) that consists of more than one F4 class, the corresponding F5 node receives
input from each relevant F4 node (See figure 7). In this example, a reading system
will need a gaussian class for both upper case A and lower case a, as well as for B and
b. The stimulus A is clearly different from a, and needs to be categorized seperately.
It is unreasonable to expect these vastly different stimuli to be categorized together, at
least in this first level. However, in preparing voice output, these four categories
must be coalesced into two categories, A and B, where each category may contain
several phonemes. This is done via supervised learning. The system is taught that, in
this case, A and a should both indicate a final F5 output of A as in figure 7. This
affords the system the modularity to process the input patterns independent of their
eventual meaning within the context indicated by the environment. This corresponds
to the actual processing that must be done by intelligent systems. The vision system
must classify the pattern input for A and a seperately, and the eventual combination of
the two patterns into a single coaceptual category is dependent on the context and
function of the system.

F4 F5

~1.0

G1

Supervised gaussian classification combination:
Gaussians Gi and G2 are combined into a single class in F5, as are G3 and G4. Thus both representations
for A can be mapped to the same high-level entity.

This can also be generalized to using known a priori probabilities for the
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events and combining the F4 nodes in a bayesian probability sense. Consider the
morpheme sequence "tu". Suppose it is known, through either expert knowledge or
observations by the system, i.e. statistics regarding the inputs seen thus far, that the
meaning indicated by "tu" corresponds to "to" 50% of the time, "two" 20% of the
time, and "too" the remaining 30% of the time. The connections between F4 and F5
can represent this knowledge, as in figure 8. The meaning for the indicated sequence
has a priori probabilities representing these ratios. The context, or surrounding
words, is then used in conjunction with these a priori probabilities to determine the
posterior probability for each potential meaning. This bayesian combination scheme
allows for the incorporation of current information (context) with a priori knowledge
(prior statistics). In this way expectation is added to the system, based on these prior
statistics. This allows the addition of expert knowledge to the system, allowing a
degree of interaction between the system and the developer or user.

F4 E5.

0.3

0 too

FIGURE 8

Supervised gaussian classification combination:
Gaussians are processed in a probabilistic sense, based on system feedback or expert knowledge.

Summary

The need for more complete temporal knowledge processing has been clear to
researchers in artificial intelligence and neural network theory for more than twenty
years. Work in rule based systems has failed to yield a satisfactory approach. In
addition, much of the neural network research in the area has been devoted to a simple
transformation of temporal data into a spatial pattern. Although this is the approach
which lends itself to early small-scale success, it is necessary to use the incoming
temporal data in a way that preserves the knowledge inherent in this data. The
different aspects of temporal information -- short-term, medium-term and long-term



context -- indicate a seperate approach to extracting the knowledge for each aspect.
The system proposed herein performs processing on incoming data without first
depriving it of much of the information of importance. It learns the statistics of its
input and the system adapts to a changing environment. Although specific
architectures may vary, the component concepts described above. will allow a system
to utilize the temporal information available to more fully understand its
environment.
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